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Abstract The flip-annihilation process is a random particle process with one-dimensional
local interaction in discrete time, initially presented by one of us, namely Toom in 2004.
Its components are enumerated by integer numbers and every component has two states,
“minus” and “plus”. At every time step two transformations occur. The first one, called
“flip”, independently turns every minus into plus with probability β. The second one, called
“annihilation”, acts thus: whenever a plus is a left neighbor of a minus, both disappear with
probability α independently from other components. What is interesting about this process
is that it is ergodic for β > α/2 and non-ergodic for β < α2/250. It is natural to conjecture
that there is some transition curve, which we call the true curve and denote by β = true(α),
which separates the areas of ergodicity and non-ergodicity of this process from each other.
The estimates, mentioned above, albeit rigorous, leave a large gap between them and the
present article’s purpose is to obtain some closer, albeit non-rigorous, approximations of the
true curve. We do it in two ways, one of which is a chaos approximation and the other is a
Monte Carlo simulation. Thus we obtain two curves, which are much closer to each other
than the rigorous estimations. Also we fill in, albeit only numerically, another shortcoming
of the rigorous estimation β < α2/250, namely that it leaves us uncertain whether the true
curve has a zero or positive slope at the point α = β = 0. Both approximate curves have a
positive slope at α = 0, as we hoped.
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1 Introduction

For most interacting particle systems, considered till now, the set of components, also
called the space, does not change during the process. We call such operators and processes
constant-length. We call processes, where the sites themselves may appear or disappear,
variable-length processes. There are quite a few studies of them now, including Toom’s
[6–8]. Maes’ recent survey [1] refers to a similar kind of processes as processes with com-
plex architecture as part of his discussion of new trends in interacting particle systems.
Another study of similar processes is presented in Malyshev’s works [2, 3], which are moti-
vated by some connections between computer science and quantum gravity.

Let Z be the set of integer numbers and A a finite set called alphabet. We call AZ the con-
figuration space. Any s ∈ AZ is called a configuration, which may be denoted by s = (si),
where si denotes its component at the position i ∈ Z. We call elements of A letters. We call
any finite sequence of letters a word. We denote by An the set of n-letter words. We call a
thin cylinder any set of the form

C = {s ∈ AZ : si = ai for all i ∈ [m,n]}, where ai ∈ A. (1)

We consider only normalized measures on AZ, that is on the σ -algebra generated by thin
cylinders (1). We call a measure on AZ uniform if it is invariant under translations along Z.
For any uniform measure μ and any word W = (a1, a2, . . . , an) ∈ An we may write

μ(W) = μ(a1, a2, . . . , an) = μ(si+1 = a1, si+2 = a2, . . . , si+n = an). (2)

Since the right side of (2) does not depend of i, we may use the left side and call it the
frequency of the word W in the uniform measure μ. We denote by M the set of normalized
measures on AZ and by Mu the set of normalized uniform measures on AZ.

Random processes with discrete time are usually defined by some operator P , which
transforms any normalized measure into another normalized measure. By a process we mean
a sequence of measures μ, μP, μP 2, . . . , where μP n is the result of n applications of an
operator P to the initial measure μ. (We write operators on the right side of measures on
which they act.) A measure μ is called invariant for an operator P if μ = μP. Since we deal
mostly with uniform measures, we use the following definition of ergodicity. An operator
P : Mu → Mu is called ergodic if the limit of μP t exists (on the algebra generated by thin
cylinders) and is one and the same for all initial measures μ ∈ Mu.

Now let us concentrate on the process introduced in [7], which we call flip-annihilation.
Let us describe it briefly. The components are enumerated by integer numbers. Each compo-
nent can assume only two states ⊕ and �, called plus and minus respectively. Our operator
is a superposition of the following two operators. The operator flip denoted by Flipβ is very
simple. Under its action every minus turns into plus with a probability β independently from
other components. The annihilation operator is denoted by Annα. Under its action, when-
ever a pair (⊕, �) occurs in a configuration, it disappears with probability α independently
of what happens at other places. In other words, when a plus and a minus occupy the i-th
and (i + 1)-th sites respectively, both are eliminated with probability α and the components
occupying the (i − 1)-th and (i + 2)-th sites become neighbors. With the complementary
probability 1 − α these components remain unchanged.

By the flip-annihilation process we mean the superposition Flipβ Annα applied iteratively
to an initial measure. (At every step first acts the operator Flipβ, then Annα .) This article is a
numerical study of this process.
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We denote by δ� and δ⊕ the measures concentrated in the configurations “all minuses”
and “all pluses” respectively. Of course, δ⊕(Flipβ Annα) = δ⊕; so, if we start our process
with all pluses, we remain there forever. Therefore our operator Flipβ Annα is ergodic if and
only if

∀μ ∈ Mu: lim
t→∞ μ(Flipβ Annα)

t = δ⊕. (3)

The following theorem sums up the most relevant here of what we know about ergodicity of
the operator Flipβ Annα .

Theorem 1

(a) If β > α/2, then Flipβ Annα is ergodic.
(b) If β < α2/250, then Flipβ Annα is not ergodic and has at least two different invariant

measures.

For the case α < 1 this theorem was proved in [5, 7, 8]. For the case α = 1 it is explained
in [5] and a complete proof is available in [4]. Theorem 1 is illustrated by two curves
β = α/2 and β = α2/250 on Fig. 2. We call these curves the rigorous estimations. We use
a logarithmic scale on the vertical axis in this figure because in the usual scale the curve
β = α2/250 would be too close to the horizontal axis.

In addition to the facts, which are already proved, we conjecture that whenever β in-
creases, the operator Flipβ Annα cannot pass from ergodicity to non-ergodicity. Under this
assumption, for every α ∈ [0,1] there is a value of β in [0, 1], which we denote by true(α),
such that the operator Flipβ Annα is ergodic for β > true(α) and non-ergodic for β < true(α).
We assume also that the function true(α) is continuous, which allows us to speak about
the curve β = true(α), which serves as the boundary between the regions of ergodicity
β > true(α) and non-ergodicity β < true(α). We call the set {(α,β) : β = true(α)} the true
curve. Our main goal is to approximate it. Of course, the true curve (if it exists) is sand-
wiched between the rigorous estimations, but they are pretty far from each other; we want
better numerical estimations.

2 Chaos Approximation

We denote by C : Mu → Mu, the well-known chaos operator. Its action amounts to mix-
ing randomly all the components. In other words, for each μ ∈ Mu the measure μ C is a
product-measure with the same frequencies of all the letters as μ has. (This method is also
known as mean-field approximation.) The chaos operator allows us to approximate a given
process μP t on the configuration space AZ by another process μ(C P )t on the same space.
(Every time we apply first C , then P .) Thus, instead of the original process, whose set of
parameters is infinite or very large, we deal with the evolution of densities of letters, that is a
finite and limited set of parameters. Since densities of the letters sum up to one, the number
of independent parameters in the chaos approximation equals the number of letters in the
alphabet minus one. In our case, with only two letters, we deal with only one parameter: as
such we choose the density of pluses.

Due to the properties of the chaos operator, the density of pluses in the measure
μ C Flipβ Annα depends only on the density of pluses in the measure μ and this dependence
may be expressed by the formula

f (x) = b − α · b(1 − b)

1 − 2α · b(1 − b)
, (4)
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where x denotes the frequency of pluses in the measure μ, f (x) denotes the density of
pluses in the measure μ C Flipβ Annα and b = x + (1 − x)β . (b is the density of pluses in the
measure μ C Flipβ .) Since the maximal value of b(1−b) is 1/4, the denominator of (4) is not
less than 1/2. So f (t) is defined and continuous for x, α, β ∈ [0, 1]. Thus the study of the
operator Flipβ Annα is substituted by a study of the operator C Flipβ Annα , which boils down
to the study of the one-dimensional dynamical system f : [0,1] → [0,1] with parameters
α, β ∈ [0, 1]. As usual, we call a fixed point of this system a value of x ∈ [0, 1] such that
f (x) = x. We call our dynamical system ergodic if it has a unique fixed point xfixed and

∀x ∈ [0, 1]: lim
t→∞ f t (x) = xfixed,

where f t means the t -th iteration of f.

Theorem 2 The chaos approximation C Flipβ Annα is ergodic if β > β∗(α) and is not er-
godic if β ≤ β∗(α), where

β∗(α) =
{

4−α−2
√

4−2α

α
if α > 0,

0 if α = 0.
(5)

Thus for the chaos approximation we know exactly the curve dividing ergodicity and non-
ergodicity: it is the continuous curve β = β∗(α): it starts at the origin with the slope 1/8,
grows smoothly and reaches 3 − 2

√
2 ≈ 0.17 at α = 1. The graph of this curve is labeled

“Chaos” in the Fig. 2.

Proof First let α = 0. It is easy to observe that in this case our dynamical system is ergodic
for all β > 0 and non-ergodic for β = 0, so Theorem 2 is true. Now let α > 0. If β equals
zero or one, Theorem 2 is evident. So now we additionally assume that 0 < β < 1. Solving
the equation f (x) = x explicitly, we find out that all the fixed points of f are those of the
values

p1 = α − 3αβ − √
�

4α(1 − β)
, p2 = α − 3αβ + √

�

4α(1 − β)
, p3 = 1, (6)

which are real and belong to [0, 1], where

� = α2β2 + 2α2β + α2 − 8αβ. (7)

Since α > 0 and β < 1, the denominator of p1 and p2 in (6) is not zero. Since β > 0,

0 < p1 ≤ p2 < p3 = 1 (8)

whenever p1 and p2 are real, that is � ≥ 0. � equals zero at β = β1(α) and β = β2(α),
where

β1(α) = 4 − α − 2
√

4 − 2α

α
and β2(α) = 4 − α + 2

√
4 − 2α

α
. (9)

Here β1 is what we called β∗. According to (7), � is a quadratic function of β with a
positive second-degree coefficient, so � is negative when β is between the roots (9) and
positive when β is less that β1(α) or greater than β2(α). It is easy to observe that

∀α > 0: 0 < β1(α) < 1 < β2(α). (10)
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If β < β1(α), then � > 0 and our dynamical system has three different fixed points p1, p2

and p3, so it is non-ergodic. If β = β1(α), then � = 0 and our dynamical system has two
different fixed points p1 = p2 and p3, so it is non-ergodic too.

Now let β > β1(α). In this case � < 0, so f has only one fixed point p3 = 1. Let us
prove that for all x0 ∈ [0,1], f t (x0) tend to 1 when t tends to infinity. As we know, f

is continuous in [0,1]. So, g(x) = f (x) − x is also continuous. It is easy to calculate that
g(0) > 0. Since g is continuous, equals zero only at the point x = 1 and g(0) > 0, we
conclude that g(x) > 0 for all x < 1, whence f (x) > x for all x < 1. Then for all x0 < 1 the
sequence f t (x0) is growing and limited by 1 and therefore has a limit, which is a fixed point
of f . But 1 is the only fixed point of f , so f t (x0) → 1 when t → ∞. Theorem 2 is proved
completely. �

In fact, we can describe completely the limit behavior of this dynamical system:

If � < 0, then lim
t→∞f t (x0) = p3 = 1 for all x0.

If � = 0, then lim
t→∞f t (x0) =

{
p1 = p2 if x0 ≤ p1 = p2,

p3 = 1 if x0 > p1 = p2.

If � > 0, then lim
t→∞f t (x0) =

⎧⎪⎨
⎪⎩

p1 if x0 < p2,

p2 if x0 = p2,

p3 = 1 if x0 > p2.

3 Monte Carlo Simulation

Along with the process on AZ we shall consider its analogs on finite spaces. When our
operators act on finite configurations, every act of elimination of (⊕,�) decreases the length
of the configuration by two, whence in the average the number of components decreases and
the process degenerates into a finite sequence of pluses (provided β > 0), which remains one
and the same forever. However, the time needed for this may depend drastically on the values
of our parameters α and β .

Let us consider the following finite analog of the flip-annihilation process. It is a Markov
chain with a countable set � of states called circulars. The circulars are similar to words
as they also are finite sequences of pluses ⊕ and minuses �, but now we imagine these
sequences to have circular form. We denote by |C| the number of components in a circular C.

The indices of these components are remainders modulo |C| (see Fig. 1 where |C| = n).
(We could use words instead of circulars, but this would necessitate special definitions

at the ends when we transform them.) In most of our Monte Carlo simulations, the initial
circular C consisted of 1000 minuses. In every single experiment, the integer time t grew
from zero to at most 100 000. The circular obtained at time t was denoted by Ct and its i-th
components were denoted by Ct

i , where i = 0, . . . , |Ct | − 1.

We say that a word W = (a1, a2, . . . , an) appears at a place i in a circular C =
(c1, . . . , cn) if

ci+1 = a1, ci+2 = a2, . . . , ci+n = an.

Fig. 1 A circular C with |C| = n
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We denote by quant(W |C) the quantity of different places where the word W appears in a
circular C. After that, we define the frequency of W in C as follows:

freq(W |C) = quant(W |C)

|C| . (11)

Let us describe a procedure, which we call Imitation and which is a Monte Carlo imitation
of our process. This procedure generates a sequence of circulars in the following inductive
way.

Base of induction. The initial circular C0 consists of 1000 minuses.
t-th induction step. Given a circular Ct , where t = 0, 1, 2, . . . we perform three pro-

cedures:
First procedure imitating the action of flip: every component of Ct , which is a minus, be-

comes a plus with a probability β independently from other components. (In more technical
detail, for every minus in Ct we generate a new random variable distributed uniformly in
(0, 1) and change this minus into plus if this variable is less than β .) We denote the resulting
circular by (C ′)t .

Second procedure imitating the action of annihilation: whenever a component of (C ′)t ,
which is a plus, is a left neighbor of a component, which is a minus, both are eliminated from
the circular with a probability α independently from other components. (In technical details,
for every such pair we generate a new random variable distributed uniformly in (0, 1) and
perform this elimination if this variable is less that α.) We denote the resulting circular by
(C ′′)t .

Third procedure which helps to imitate the infinite process: given (C ′′)t , we generate a
new circular, namely Ct+1, in the following way: if |(C ′′)t | < Nmin, where Nmin = 500, then
Ct+1 is obtained from (C ′′)t by concatenating it with its copy and thereby duplicating its
length; otherwise Ct+1 = (C ′′)t .

When we stop: given a constant T = 100 000, we stop when t = T or there is none
minus in the circular Ct .

Let us explain why we need the third procedure. Remember that under the action of our
operator, components can disappear, but not appear; so for any β > 0 the length of any finite
circular decreases in the average and finally the process degenerates into a circular consisting
only of pluses. The third procedure allowed us to postpone this and thereby helped us to
make our simulation more similar to the infinity process.

Thus the procedure Imitation is described. We used it for various purposes in our study,
but right now we use it for only one purpose: to attribute the appropriate value to a Boolean
variable denoted by E (which means ergodicity), namely E is given the value yes if the last
circular Ct contains none minus; otherwise E is given the value no. If E = yes, we interpret
this as a suggestion that the process with the given values of α and β is ergodic; the result
E = no is taken as a suggestion that our process is non-ergodic.

In fact we used Imitation within a cycle with growing β: we started with β = 0 and then
iteratively performed Imitation and increased β by 0.001 and repeated this until β reached
the value 1 or E got the value yes, that is ergodicity was suggested. Thus we obtained a
certain value of β . In fact, we performed this cycle 5 times and recorded the arithmetical
average of the 5 values of β thus obtained.

Remember that all this was done with a certain value of α. In fact we considered 1000 val-
ues of α, namely the values αi = 0,001 · i for i = 1, . . . ,1000. The corresponding recorded
value of β was denoted by βi . Thus we obtained 1000 pairs (αi, βi). The graph called M.C.
on Fig. 2 consists of these pairs plotted.
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Fig. 2 This graph shows both rigorous estimations and the two approximations of true(α): the chaos approx-
imation(Chaos) and the Monte Carlo approximation (M.C.). Every point of the latter curve was obtained as
an average of 5 independent experiments

You can see that the Monte Carlo “curve” is not exactly a curve, it is somewhat fuzzy. If
instead of five procedures we had more for every value of α, this graph would be thinner.
However, even such as it is, it gives some idea of the behavior of our process.

We see that the Chaos and M.C. curves are much closer to each other than the rigorous
estimations and we conjecture that they are closer to the true curve also.

3.1 Estimation of s(α, β)

In [7] a function s(α, β) was defined as the supremum of density of pluses in the measure
μt over all natural t . For every α the function s(α, β) was proved not to be continuous as
a function of β . We wanted to estimate s(α, β) numerically, but to estimate it directly was
difficult, so, instead of that, we estimated

s(α, β) = max{freq(⊕|Ct) : t = 0, . . . ,100 000}.
In the area of ergodicity (white area) s(α, β) = 1. Figure 3 shows the values of s(α, β)

in the other area, where our finite approximation suggests non-ergodicity. The values of
s(α, β), are represented by colors according to the rule shown in the color box on the right
side. All the values of s(α, β), which we obtained for all the non-ergodic area, were less or
equal to 0.14, which illustrates non-continuity of s(α, β) as a function of β.

We studied in more detail the behavior of s(α, β) near the critical curve: we took a few
values of α and for everyone of them made 100 experiments, in each of them making β

grow from zero to one with an increment 0.001, all the time calculating the supremum of
density of pluses, which we denoted by si(α, β). Then we defined

E[s(α, β)] = 1

100

100∑
i=1

si(α, β) (12)
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Fig. 3 Here we used colors to represent the values of s(α, β) in the area, where the process is suggested to
be non-ergodic. The color box on the right side shows how colors from yellow to black represent the values
of s(α, β). For better visualization, we excluded the values greater than 0.08, which constitute less than 1%
of all data

Table 1 This table shows E[s(0.5, β)] and the correspondent [a|C|, b|C|] when |C| increases

|C| [a|C|, b|C|] E[s(0.5,0.001)] Var[E[s(0.5,0.001)]]

125 [0.007,0.042] 0.0156 0.00411

250 [0.014,0.042] 0.0121 0.00252

500 [0.023,0.042] 0.0106 0.00179

1000 [0.030,0.042] 0.00076 0.00106

2000 [0.038,0.042] 0.00087 0.00085

4000 [0.039,0.041] 0.00095 0.00062

and used (12) as an approximation for s(α, β). The behavior of E[s(α,β)] for α = 0.25, 0.5
and 0.75 is shown in Fig. 4. We observe that when β increases, E[s(α,β)] also increases
and that near the true(α) there is an abrupt increase. For the same sample we evaluated
the variance. The error bars in Fig. 4 show the variance of those si(α, β) which we used
to obtain E[s(α, β)] in (12). We see that the variance is the largest near the critical value
true(α). We notice similar qualitative behavior of E[s(α,β)] for all the three values of α.

To study the first order phase transition of s(α,β) in more detail, we studied the behavior
of s(0.5, β), taking the initial circulars C consisting of |C| = 125, 250, 500, 1000, 2000
and 4000 minuses. For each one of them, the maximal time was taken 100 · |C|. Figure 5
shows the results of this experiment. In this case we restricted our attention to a window
of observation, where, as we believed, was the critical value true(0.5), which separates the
area, where s(0.5, β) = 1, from the area, where s(0.5, β) < 1.

We denoted by a|C| the minimum of those values of β , for which the variance of
E[s(0.5, β)] was greater than 0.01 and by b|C| the maximum of those values β , for which the
variance of E[s(0.5, β)] was greater than 0.01. Using the behavior of variance near true(α),

we estimated the interval [a|C|, b|C|], which contains all the values of β, whose variance
was greater than 0.01. The results are shown in Table 1.
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Fig. 4 Behavior of s(α,β) for three values of α, namely α = 0.25, 0.5 and 0.75. In each case it grows sharply
near the critical value. For each value of β we made 100 independent experiments. Error bars represent the
standard deviation

Fig. 5 We recorded values of s(0.5, β) for different lengths of initial circulars. For each β we conducted 100
experiments

Table 1 shows that when |C| increases, the length of the interval [a|C|, b|C|] decreases.
Also, we observed that E[s(0.5, β)] shows a behavior more stable when |C| increases
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since its variance is decreasing. We conjecture that when |C| tends to infinity, the inter-
val [a|C|, b|C|] degenerates into a point and this point is the value of true(α). Moreover, we
conjecture that when |C| tends to infinity, our estimation (12) for all values of β converges
to the supremum of density of pluses in μt, that is to s(α,β).

We also studied how the results of our M.C. approximation depend on the parameter
Nmin. This suggests that our conclusions about phase transition and slope remain valid for
others values of Nmin. This confirms our belief that this computational model approximates
well the infinity process.

3.2 The Slope at Zero

It is natural to expect our process to converge to a process with continuous time when α and
β tend to zero, their proportion remaining constant. If this is true, the true curve should have
a positive slope at α = β = 0, but our rigorous estimations do not imply this. For this reason
we are interested in the value of this slope for our approximations. We have already seen that
the chaos approximation has a positive slope at the origin, namely 1/8. Now let us evaluate
this slope for the Monte Carlo simulation. The procedure is similar to that we used to obtain
the separating curve shown in Fig. 2, but with the following modifications: for every j ∈
{0,1,2,3,4,5}, we take α varying from zero to 1/2j with an increment of 1/(2j × 1000).

So, for every considered value of j, we recorded pairs {αj

i , β
j

i } for i = 1, . . . ,1000. For
these pairs we calculated the best fits, linear and quadratic, which we denote by

f
j

L(α) = aj · α and f
j

Q(α) = bj · α + cj · α2.

To obtain these fits, we used the least square method. We introduced two functions, f
j

L

and f
j

Q which are the “best” fits for the set of datas. These functions are obtained by mini-
mization of

D
j

fL
=

1000∑
i=1

(βi − f
j

L(α
j

i ))
2 and D

j

fQ
=

1000∑
i=1

(βi − f
j

Q(α
j

i ))
2.

Table 2 shows the coefficients of the linear and quadratic fits. For α near zero the se-
quence of coefficients aj of the linear fit, shown in the first column of the Table 2, stabi-
lizes around 0.073 when j > 2. The second and third columns show the coefficients of the
quadratics fit. The coefficient bj of the linear term of this fit fluctuates around the same value

Table 2 The first column contains the coefficients of the linear fit, which show convergence to ≈0.073. The
second and third columns contain the coefficients of the first and second degree terms of the quadratic fit
respectively. The second column behaves like the first one, only looser. The third column shows no clear
pattern, which suggests that the quadratic term is irrelevant

j aj bj cj

0 0.0911 0.0632 0.0371

1 0.0779 0.0718 0.0165

2 0.0742 0.0737 0.0027

3 0.0729 0.0738 −0.0095

4 0.0730 0.0745 −0.0321

5 0.0729 0.0712 0.0715
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as aj , but with less persistence. The coefficient cj shows no clear pattern of behavior, which
suggests that it is irrelevant. We see that the linear fit approximates our curve near the origin
(0,0) at least as well as the quadratic fit. This suggests that the curve is approximately linear
near the origin with the slope approximated by the values of aj . We conclude that the M.C.
approximation has a positive slope at the origin, approximately equal 0.073.

4 Conclusions

This work is a numerical study of a variable-length process, which has been proved else-
where to behave in a non-trivial way. We obtained two approximations of the hypothetical
curve true(α), separating areas of ergodic and non-ergodic behavior of this process, using
a chaos approximation and a Monte Carlo simulation. Also, we have presented a computa-
tional model to approximate this process, which may be used to approximate other variable-
length processes. Finally, we have shown numerically that the slope of the curve true(α)

is positive when the probabilities α and β are near zero. Our numerical work may indicate
appropriate directions for future research.

Acknowledgements We thank the referee for useful correction. We cordially thank D.M. Pianto for a
useful discussion of Table 1. A.D. Ramos cordially thanks the CNPq/MCT and CT-Info, which supported
this work. A. Toom was partially supported by CNPq and PRONEX.

References

1. Maes, C.: New trends in interacting particle systems. Markov Process. Relat. Fields 11(2), 283–288
(2005)

2. Malyshev, V.: Quantum evolution of words. Theor. Comput. Sci. (2002). Available at http://www-rocq.
inria.fr/%7Emalyshev/Malyshev/papers.htm

3. Malyshev, V.: Quantum Grammars. Part 4.1: KMS states on Quantum Grammars. Preprint INRIA,
no. 3702, pp. 1–20 (1999) and J. Math. Phys. 41(7), 4508–4520 (2000)

4. Ramos, A.D.: Particle process with variable length. Ph.D. Thesis. Federal University of Pernambuco,
Department of Statistics, Recife, Pernambuco, Brazil (2007). (In Portuguese with an abstract in English.)
Available at http://de.ufpe.br/~toom/ensino/doutorado/alunos/index.htm

5. Ramos, A.D., Toom, A.: An error correction. Letter to the editor. J. Stat. Phys. 131(1), 167–168 (2008)
6. Toom, A.: Particle systems with variable length. Bull. Braz. Math. Soc. 33(3), 419–425 (2002)
7. Toom, A.: Non-ergodicity in a 1-D particle process with variable length. J. Stat. Phys. 115(3/4), 895–924

(2004)
8. Toom, A.: Every continuous operator has an invariant measure. J. Stat. Phys. 129, 555–566 (2007)

http://www-rocq.inria.fr/%7Emalyshev/Malyshev/papers.htm
http://www-rocq.inria.fr/%7Emalyshev/Malyshev/papers.htm
http://de.ufpe.br/~toom/ensino/doutorado/alunos/index.htm

	Chaos and Monte Carlo Approximations of the Flip-Annihilation process
	Abstract
	Introduction
	Chaos Approximation
	Monte Carlo Simulation
	Estimation of s(alpha, beta)
	The Slope at Zero

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


